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ABSTRACT Finding optimal maintenance policies for complex multi-component systems is a real-world
challenge in the industry. This paper compares three maintenance policies for complex systems with non-
identical components and economic dependencies in case of fault. Discrete event and Monte Carlo simulation
are used to replicate fault occurrences, while a genetic algorithm is used to minimize the cost of maintenance
by finding optimal groups of maintenance activities. Low total average maintenance cost and high average
availability of the system are considered as desirable objectives and the capacity of the studied policies to
achieve these goals is analyzed. None of the policies dominates the others (in a Pareto efficiency sense), thus
making the policy choice context dependent and subject to decision makers’ preferences.

INDEX TERMS Maintenance policies, simulations, genetic algorithm, opportunistic maintenance.

I. INTRODUCTION

This paper studies a set of maintenance policy alterna-
tives available for managing the maintenance of complex
systems—policies with and without grouping of maintenance
activities are considered. More specifically, three possible
real-world maintenance policies are studied and (dynami-
cally) optimized for simulated maintenance schedules that
include simulated occurrences of fault events; subsequently,
the resulting cost of maintenance and the observed reliability
of the system are recorded for each simulation and for each
policy, and used to compare the policies.

Besides presenting results, our goal is to show that this
approach is sufficiently holistic and general to be used in aid-
ing industry decision making on maintenance policy selection
and to illustrate the real-world applicability of the methods.
The possibility to test a maintenance policy for suitability in
advance is a substantial improvement to the decision making
process connected to choosing a maintenance policy, a task
typically carried out by a maintenance department in an
industrial company.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chaitanya U Kshirsagar.
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The need to choose a suitable maintenance policy is espe-
cially pressing in the context of industries with high setup
and downtime costs due to maintenance operations. A few
examples of high downtime cost industries are the oil and
gas industry, where reaching offshore extraction facilities is
costly; the steel making industry, where the shutdown of
blast furnaces requires long times and causes large losses
of material; and the production of pulp and paper, where
the cost of missed production is high enough to justify a
24/7 operation. Other examples are electrical networks [18]
and manufacturing systems [19].

The result of choosing a maintenance policy is also prac-
tical: each policy produces a set of actions, or a maintenance
schedule, that can be implemented in practice.

A. MOTIVATION

Finding a good maintenance policy is a challenge of primary
importance for many production-based industries running
physical production assets. Some authors [5], [27] claimed
that maintenance costs in the industry could range between
15 and 70 % of total production costs. It is then clearly in
the best interest of these organizations to try to minimize
maintenance related costs and to maximize the reliability
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and availability of their machines. Previous research in the
field of maintenance policy research has produced a rather
wide range of policies for the management of maintenance of
complex multi-component systems [8], [9], [30], [45]. These
theoretical policy-models typically optimize the maintenance
schedule with regards to several objectives and are able to
integrate short-term information on system status. A sudden
fault is a typical short-term occurrence (information) which
negatively influences the performance of a machine and of a
maintenance-system. It may be impossible to fully insulate a
system against sudden faults, but having a maintenance policy
in place that is able to minimize the costs from a sudden
fault can work to decrease the associated costs. The question
is then about how to choose a good maintenance policy.
By knowing the lifetime distributions of system components,
the failure process can be quite accurately replicated, and
the performance of different maintenance models can be esti-
mated in advance. Using a simulation-based approach allows
the effective comparison of different maintenance policies
and is a suitable tool for analyzing them [4]. Simulation mod-
els are also able to consider the dependencies between com-
ponents. Modeling of economic dependencies, such as (high)
setup costs of activities, is of fundamental importance for
systems with series of components.

The ability to intelligently group maintenance activities,
when failures take place, increases the ability of an organi-
zation to minimize maintenance related costs. In addition to
the optimization results any further exploitation of statistics
from simulation-based analyses may help managers to obtain
additional insight in the reliability of a system and on the
robustness of a maintenance policy.

B. STATE OF THE ART

Manufacturing systems are increasingly complex and their
effective maintenance is a challenge for maintenance man-
agers and researchers. The complexity of the resulting models
is often on such a level that analytical solutions for opti-
mal maintenance schemes are seldom available [30] and
simulation-based approaches are often used.

The literature on the topic proposes a great number of
different models to study and create policies for the main-
tenance of single- and multi- component systems. Reviews
and a classification of existing models were done by Cho
and Parlar [8], and by Dekker et al. [9]. Both reviews agree
on categorizing maintenance models into five groups; out of
these five, four are of interest for this research: group/ block/
cannibalization/ opportunistic models aim at identifying the
components that may be changed during preventive, or cor-
rective, maintenance.

Component dependencies can be exploited in multi-unit
systems to reduce maintenance costs. There are three types
of dependence: structural, which identifies the possibility to
maintain components independently [14]; stochastic, where
failure of one component may influence the lifetime of other
components [10], [22], [35], [40]; and economic depen-
dence. Economic dependence is typically investigated to
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establish whether it is possible to save on maintenance
costs by contemporarily executing multiple activities, or if,
instead, the execution of activities separately is economically
more feasible. Although there is potential in considering
the three dependencies together, in the literature they are
usually considered separately [9]; only Van Horenbeek and
Pintelon [42] presented an all-encompassing approach to
model all types of dependencies. Maintenance models for
multi-component systems with economic dependencies were
exhaustively reviewed by Nikolai and Dekker [30].

Maintenance-models can be further classified as static
or dynamic, depending on their ability to include (pieces
of) short-term information about the status of the system.
Static models are usually based on an infinite length planning
horizon and they are devoted to optimizing the maintenance
frequency of a component. A clear limit of static models is
their inability to consider new information about unforeseen
events. Other authors [9], and [45] presented reviews on static
maintenance models.

Dynamic models are more flexible than static models: they
exploit short- and long-term information together in order to
combine corrective maintenance (CM) with preventive main-
tenance (PM) interventions. Dynamic models that combine
interventions on different components of the same system are
also known as opportunistic dynamic grouping models. They
exploit component dependencies to defer activities from their
initially scheduled dates and thus try to make savings on setup
cost of activities. A cornerstone in dynamic grouping of main-
tenance activities is the work by Wildeman ez al. [48], which
was subsequently extended by several authors. Meaningful
improvements of the model regarded the inclusion of health
status and failure occurrence of components [6], criticality
of components [43], [44], and multi-level condition based
maintenance (CBM) [29]. One further improvement of the
model consists of the addition of activities duration, which
had previously been considered to be zero: Do Van et al. [12]
added multiple maintenance activities with different dura-
tions, Pargar et al. [32] proposed grouping and balancing
of activities, Sheikhalishahi et al. [39] accounted for human
influence on quality of maintenance and illustrated it with a
case study on an offshore oil plant in Iran.

Given the complexity of the dynamic grouping models
under analysis, a simulation-based approach seems to be the
most suitable approach to solve these types of problems [1].
Simulation-based models have been shown to be effective
in bringing results in many industries, including semicon-
ductor manufacturing, plastic industry, transportation infras-
tructure, and train maintenance facilities [3]. Alrabghi and
Tiwari [2], [3] reviewed the literature on maintenance-system
simulations and provided several examples, where Discrete
Event Simulation (DES) was proficient in modeling fault
occurrences.

The principle behind DES is easy to understand: each
time the state of the system changes, the simulator applies
the required changes to the system in accordance with the
adopted maintenance policy (e.g., CM, PM, or CBM) and the
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result with statistics is registered. DESs can be used to reach
many kinds of results, e.g., to find the optimal capacity of
inter-operational buffers which minimize the cost of a plant
downtime [28], to optimize spare parts availability [20], [47],
to estimate reliability of systems made of rotable parts [13],
to optimize thresholds in CBM policies [7], [16], to optimize
maintenance intervals [31], and to develop knowledge for
maintenance management [33].

The aforementioned DES models analyze a single policy at
a time. Finding a suitable (optimal) maintenance-policy for
a complex multi-component systems requires the compari-
son of policy alternatives—in the past, only limited efforts
have been made to compare different maintenance policies
under operative conditions [3]. There are few exceptions:
Hani ef al. [17] compared policies for train maintenance,
Van der Duyn Schouten and Vanneste [41] for management
of buffers in production systems subjected to maintenance,
and Van Horenbeek and Pintelon [42] for multi-component
systems dependencies on the components. Only [38] tested
maintenance policies for flexible manufacturing systems,
i.e., systems where wear out risk is higher than in standard
systems, operating under different failure rates. One can say
that the literature on comparing maintenance-policies is not
complete.

An improvement in DES for maintenance, was provided by
the framework of Alrabghi and Tiwari [4]. They designed a
general procedure for DES with different policies (including
CM, PM, and CBM), and this work will partly follow their
footsteps. In order to deduce meaningful insights about the
policies under analysis, our study combines DES in Monte
Carlo experiment. Rao and Bhadury [36] showed how the
comparison of opportunistic maintenance policies is possible
by using the Monte Carlo technique. In addition, the complex-
ity of the combinatorial problem pushed us to use a genetic
algorithm (GA) to obtain satisfactory solutions in a reason-
able time. While our research uses GA, we acknowledge
that also other optimization methods can be used. Although
the Monte Carlo method and a GA can provide useful
insights on suitable (optimal) maintenance-policy identifica-
tion, they have been the subject of only few publications in the
past [23].

C. CONTRIBUTION

The body of literature is populated by several complex main-
tenance models, as shown in Section I-B. A multitude of opti-
mization problems were tackled regarding cost minimization,
or availability and reliability maximization. Only few simula-
tion studies [17], [36], [41], [42] and a simulation methodol-
ogy [4] are available to compare maintenance policies. This
study differs from those already presented in the literature,
thanks to the combination of tools that is used and by the
methodology that is followed. In this research, a hypothetical
industrial system is modeled taking into account the presence
of multiple non-identical components connected in a series.
Activities duration is also considered when the maintenance
schedule is drafted, by using a genetic algorithm to optimize
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the grouping structure. Cost minimization is the only objec-
tive, while the reliability of the system is considered for policy
evaluation. an opportunistic maintenance policy similar to
that of Wildeman et al. [48] against other heuristic policies
is an element of novelty of this study, which, to best of
our knowledge, has never been done before. The policies
analyzed here can be considered realistic approximations of
real-world maintenance needs. The numerical results are used
to compare different maintenance policies, when the setup
cost of the activities varies. The setup cost is the key factor
which pushes the algorithm to group maintenance activities
whenever possible. Descriptive statistics like the expected
cost of each policy, the distribution of the variance of a
policy’s costs, and the average reliability of the system are
calculated to compare the effectiveness and robustness of the
studied policies.

The rest of this paper is organized as follows. Section II
describes the model and the optimization technique used in
the analysis and the determination of the lowest cost solution
for each policy. Section III describes the simulation proce-
dure for comparison of policies and summarizes the obtained
results. Discussion, conclusions, and suggestions for further
research are presented in Section I'V.

Il. THE MODEL

The model presented below is developed according to
the five phases, rolling horizon approach, proposed by
Wildeman et al. [48], with the addition of activities duration,
which can be summarized in the following steps:

1) Decomposition: determine the optimal frequency for
maintenance of each component separately; the plan-
ning horizon is considered to be of infinite length dur-
ing this step.

2) Penalty functions: a penalty function is determined for
each activity, and it is used to quantify the cost for
deferring the activity from its ideal execution date.
Activities can be shifted backward or forward in time.

3) Tentative planning: the duration of the plan is now
considered finite and multiple maintenance activities
are possible for each component.

4) Grouping maintenance activities: the maintenance
activities are allowed to be moved within the planning
horizon. The aim of this step is to maximize the save
on set-up cost due to grouping of activities, and to
minimize the cost due to shifting of activities.

5) Rolling-horizon step: once new short-term information
is available, it can be supplied to the model and the
model can be executed again to obtain an optimized
maintenance schedule.

We consider a multi-component system with N components
connected in series, which means that all the components
are considered critical; Namely, a fault of one component
compromises the whole system. The choice to analyze a
series system reflects the approach of previous studies on
the opportunistic maintenance policy [24], [49], [50], where
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the criticality of each component makes the opportunistic
approach particularly effective.

A. THE COST STRUCTURE

We assume that only two types of maintenance activi-
ties are possible: (i) preventive maintenance activities and
(i1) corrective maintenance activities; the first are considered
to be planned activities, whereas the second are unplanned.
Both these activities, in terms of costs, are treated as the sum
of three factors: a set-up cost, a cost for replacement of the
component, and a cost for missed production, this is similar to
what was used by [44]. The cost of a preventive maintenance
activity i is:

Cl=S+d+Chd, (1

where S is the set-up cost, cf is the cost for replacement
of the component, and nys d; is the cost of missed produc-
tion, which is calculated as the product of a coefficient nys
[$/time] and the duration of the i-th activity d;. On the other

hand, the cost of an unplanned maintenance activity i is:
Ci =S +c; +Cgdi, (@)

where S is the set-up cost, ¢} is the cost for replacement of
the component, and Cyyd; is the coefficient for unplanned
missed production.

B. DECOMPOSITION

The model we use is the dynamic grouping mainte-
nance model with the opportunistic approach proposed by
Wildeman et al. [48], with some changes. The time to failure
of each component is considered as a random variable X;, and
its probability of occurrence before time ¢ is characterized
by a two parameter Weibull distribution with the cumulative
density function (CDF):

Bi
t
Pr{X; <t} =Fi(t) =1 —exp <_k_> , 3)
i
with scale parameter A; > 0, shape parameter ; > 1, and
probability density function (PDF):

. Bi—1 Bi
o)1) 1)

Asrecalled in the literature [26], Weibull distributions are suf-
ficiently general to fit a wide range of empirical distributions,
and the lower bound imposed on the shape parameter (8 > 1)
implying increasing failure rate is not restrictive for our anal-
ysis. In fact, with B; < 1 implies a non-increasing failure
rate which, in turn, makes preventive maintenance activities
on single components unreasonable. Moreover, with today’s
high quality standards, infant mortality of components is
often a negligible phenomenon and, as claimed by Love and
Guo [26], “most often a rising force of mortality is assumed™.

At this point, the mathematical treatment to obtain the
optimal interval length for preventive maintenance x* is con-
tained in [48] and the full presentation is thus omitted here.
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However, it has been shown that, if the duration of a PM
activity is d; < x*, then x* can be approximated as:

PN s -

Eq. (5) allows us to compute the value of the minimal long-
run average cost of maintenance per unit time:

(C/'S) Bi
Bi=1
The minimal long-run average cost of maintenance per unit

of time for the whole system can be calculated as the sum of
all these costs for all the components:

¢ = di(x]) = Q)

N
Pr= & )
i=1

C. TENTATIVE MAINTENANCE

A finite length planning horizon is now considered in order
to realize the grouping of activities. The initial time of the
plan is pegin, Whereas the date of the last maintenance action
on component i is 7 (< Ipegin). The cumulative duration

DZZ of all the replacement activities between #{ and the first
activity on i is used jointly with the length of the preventive
maintenance cycle x;* in order to determine the date #; of the
first repair action j = 1 on component i. The date #;i can be
calculated by using the following equation:

t = tpegin — tie +d; + Diz —i—x;k (8)

where d; is the duration of the maintenance activity on com-
ponent i. Instead, the end date of the planning horizon f,,4 is
equal to a multiple of:

feng = max (t3) +d;. ©)]
i=1,...N

It is important to note that the maintenance activity of each
component i might be executed more than once within the
interval [#pegin, tena |, therefore the maintenance dates of activ-
ities with j > 2 are calculated as follows:

ti =5, +di+ DX +xf iy <tga,  (10)

where t;‘_l is the optimal execution date of the previous

maintenance activity on component i, Dl.jZ is the cumulative
duration of the preventive maintenance (PM) activities within
* |, ti]. The process is represented in a simpli-

the interval [£7_,,
fied manner in Fig.1.

X+ DE +d;
- >
1 1
1 1
o DF L
. _
I >

FIGURE 1. Representation of how the dates of the activities are
calculated.
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D. GROUPING MAINTENANCE ACTIVITIES

The economic dependence among the components of the
system is a key variable of the optimization model and it
is used to produce savings on maintenance costs. Savings
on setup costs are generated when maintenance activities
are executed in the same moment; Namely, one activity is
subsequent or simultaneous to the other, and it is equal to:

Ug = [|Gk| - 1] s, (11)

where |G¥| is the cardinality of the group, namely the number
of activities simultaneously executed. The higher the number
of activities in G* the greater the savings. The shifting of
maintenance activities from their ideal date leads to costs.
Suppose that the activity # is shifted from its ideal date t;,
to the date 75 of the group it belongs to: the new date of
execution is equal to fgx = t; + At;, where the temporary
shift Az; can be “positive” or “negative”, i.e., the activity
can be anticipated or postponed. In order to avoid infeasi-
ble shifts of activities, the following constraint is imposed:
At; > —x. In order to quantify the cost of activities shifting
penalty functions are introduced. The change of date of an
activity # has effect on the following activities on component
i, which are moved using a long term shift; namely, the inter-
val between the first two maintenance activities becomes x4
At;;, whereas the remaining intervals remain x*. The process
is graphically represented in Fig. 2. Once this choice has been
made, the penalty function for each activity is composed of
two parts:

1) anincrease of the expected cost with regards to the j-th
renewal cycle, which is given by E;(x] + At;;) — Ei(x]),

2) and a changing cost due to the deferments of the
future activities executed after #;;, which is calculated
as Aty ¢}

X'+ Aty X!

[
\
[

i 2

H
5

tii_q ty tgr tii

FIGURE 2. The rectangles represent activities on the time axis; with a
long term shift all the activities after t’.j are moved accordingly to tii .

Theyefore, a penalty function £;(At;) for the shifting of activ-
ity # on component i can be expressed as:

hi(Aty) = Ei(x] + Aty) — Ei(x]') — At}

[C{’+Ci‘ (x—’ - ﬂ) }
l

Ei(xf+At))

X\ Bi
—|c?+ct (/\—') —AtipF.  (12)
1

Ei(x})
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Details of this formula were presented by Wildeman er al.
[48]. The cost AH gk (tgr ) of shifting all the activities # within
a group G* to a new execution date tgk can be expressed as:

AHgi(tgr) = Y hiltgr — 1) = Y hi(Aty),  (13)
i eGk VeGk
which in turn is strictly convex (AH (/;k (-) > 0). The optimiza-
tion of the ideal execution date of the group ték is represented
graphically in Fig. 3. The economic profit EP(G¥) generated
by a group is then calculated as:

EP(G") = U — AHy; (14)

a negative value of EP means that the grouping of the activi-
ties within a group G* is not convenient, and that it is possible
to split the group in two or more subgroups which lead
to higher savings. The set of all groups is called grouping
structure, is identified with SGM, and represents a partition
of the set of preventive maintenance activities.

h(Aty), . ;
Hlte:)

t te t t

FIGURE 3. The solid curves in the plot represent the value of the penalty

function of each activity as function of the deferment At;. The

dot-dashed curve is the penalty function of group G, within which we
suppose to group activities 1! and 12. The minimum of the curve
corresponds to the ideal execution date t;k of the group.

The economic profit of a grouping structure EPS(SGM) is
defined as:

EPS(SGM) = Z EP(GY)

GkeSGM
= Y. (Ug — AHY). (15)
GkeSGM
The goal of the problem is to maximize the profit given by
the grouping structure. More formally, we search the optimal
grouping structure SGM ),

SGM,p; = arg max EPS(SGM). (16)
SGM

E. OPPORTUNISTIC APPROACH

The model for dynamic grouping maintenance presented
above can be modified to include special needs of main-
tenance managers. With special needs we mean the occur-
rence of a sudden fault, or any planned activity that must
be performed at a certain time. An opportunity to perform
maintenance at a time #,p, on a component i is modeled with
the following penalty function:

0 if 1 = topp

hilt) = i1 topp- a7

+OO,

VOLUME 8, 2020



M. Urbani et al.: Comparison of Maintenance Policies for Multi-Component Systems

IEEE Access

Eq. (17) reads that if the maintenance activity on the faulty
component i is executed at time ¢, with ¢ # £, the cost for
shifting the activity is extremely high. Therefore, the activity
on the faulty component will most likely be executed at .y,
and other activities will possibly be anticipated and grouped
with it.

Ill. SIMULATIONS

A. METHODOLOGY

The goal of the simulation approach is to analyze the cost of
different maintenance policies in a multi-component system
environment with randomly generated faults and variable set-
up costs. We have designed a set of discrete event simu-
lation (DES) procedures that mimic different maintenance
policies.

Three preventive maintenance policies are tested for
8670 hours, namely one year of simulated time, in a
Monte Carlo experiment using different setup costs § €
{0, 50, 100, 150, ..., 600}. Each combination of policy and
setup cost is tested 1, 000 times in order to obtain infor-
mation about the average cost of maintenance, the aver-
age availability of the system, and maintenance frequency.
Independently of the policy, the system is shut down every
time that a corrective or preventive maintenance policy is
performed, and, when maintenance is executed, there is
no ageing of components. After a component has been
repaired, its degradation state is considered as-good-as-new.
The experiment mimics the dynamic environment that we
have in the real world by simulating the occurrence of
faults according to the time to failure distribution of each
component.

Maintenance activities are scheduled and managed accord-
ing to the following three maintenance policies:

o Minimal repair policy (MRP): A preventive mainte-
nance activity is scheduled for all the components at
time intervals of x} (> 0) working hours based on the
age. According to the rolling horizon approach, the event
with the earliest date is processed and it can be either
a corrective or a preventive maintenance intervention;
after a component has been processed, a new PM is
scheduled.

« Adaptive grouping policy (GPa): According to this
policy, maintenance activities are initially planned at
time intervals x; for all the components. The group-
ing structure is optimized using the GA and the first
group of activities, i.e. group G in Fig. 4, is added to
the maintenance plan. According to the rolling horizon
approach, the system starts to process the first event,
which could be either a group of PM activities, or a CM
activity. If the upcoming event is a group of activities it is
regularly executed, then new PM activities are planned
and a new grouping structure is found using the GA.
The process loops until a failure event occurs, in which
case the system executes maintenance only on the faulty
component; indeed, in case a fault occurs, no grouping
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Maintenance policy:
®  Min. repair O Grouping

omponent
&
| ]

w
L}

i
I

0 100 200 300 400 500 600
Days

FIGURE 4. The black rectangles represent the activities planned at their
optimal date, whereas the white rectangles represent the groups of
activities; each group is identified with a label GX. The example is
realized with data from Table 1, and S = 100.

is performed, but the faulty component is immediately
repaired. A new grouping structure needs to be found
taking into account that a new PM activity has been
added to the plan at f,,, + x;, where i is the faulty
component.

« Opportunistic grouping policy (OGP): According to
the rolling horizon approach, a preventive maintenance
intervention is planned for all the components, thus mak-
ing available a temporary schedule. Based on the infor-
mation contained in the schedule, the grouping structure
is optimized using a genetic algorithm (GA) and the
system produces a new maintenance schedule made of
groups of activities, which resembles that of Fig. 4.

If the upcoming event in the simulation is a preventive
maintenance intervention, i.e. group G in Fig. 4, this is
regularly executed and new PM activities are planned
for each component. The grouping structure is then
optimized again using the GA and the new maintenance
dates of the components just maintained; subsequently,
the group of PM activities with the earliest date is exe-
cuted, unless a fault event occurs. When a fault occurs,
the GA is called down to optimize the grouping structure
implementing (17), which has the aim to lock down the
CM activity at the time of fault ¢,,,. The effect produced
on the schedule is represented in Fig. 5, where it is
possible to see that the activity on the faulty component

Activity date with policy: |
®  Minimal repair @ Grouping ©® Opponunllyl

ot
6 "1
Gt G°
5 a = a
- 6t
Eaf S .
2
5 1
g 10pp. c°
o3k -
83
&t
ok —
10pp- G°
1p ~ - = -
I I | I | I |

0 100 200 300 400 500 600
Days

FIGURE 5. OGP: When component 3 fails the maintenance on component
1 is anticipated at topp.
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‘ START

‘ Schedule PM at x**

| Sample new failure dates |

{ '

1

Optimize grouping
structure

Is next event
CM or PM?

Process next event on
component i
Plan a new PM on
component i
Sample failure date for
component i

Process next group G
Plan a new PM on all
components of G

YES

MINIMAL REPAIR ADAPTIVE GROUPING OPPORTUNISTIC GROUPING

Plan a new PM on
component i

Optimize grouping
structure

Is next event
CM or PM?

Optimize grouping
structure
Process next group G

Plan a new PM on all
components of G

Process failed
component i

Sample failure dates for
components in G

Sample failure date for

Sample failure dates for
components in G

component i

YES

FIGURE 6. Simulation procedures for the different policies analyzed.

(component number 3) is grouped together with
component 1 at time 7y, thus saving one setup cost S.
The simulation restarts by planning new PM activities
for the components that were maintained in the last
group and subsequently a new grouping structure is
optimized based on this schedule.

In all the policies, the algorithm continues to process events
according to the previous rules until the end of the simulation
horizon .4 is reached.

After a group of activities has been executed, its cost C
is calculated according to the following equation for all the
policies:

C=)>Y cl+cf+s (18)
ieG\f

The equation is valid for groups with one or more com-
ponents, among which at most one can be failed. The
set of components involved in the group maintenance is
indicated by G, Cf is the cost of preventive maintenance
of a component, and CfC is the cost of corrective main-
tenance on the failed component f (if there is a faulty
component). The last term represents the setup cost S
which, as stipulated in (11), is paid only once instead of
|G| times.

The policies studied in this paper are summarized in the
flowchart presentation in Fig. 6, which can also be considered
a small, but original, contribution to the field of maintenance-
systems simulation.
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TABLE 1. Characteristics of the components of the system.

Comp. >\i ﬁl CP CC dl'

7 k3

450 2.1 300 500 5.61
550 14 500 700 @ 5.28
340 22 300 500 @ 6.12
440 1.3 300 490 5.85
450 2.0 500 1010 4.50
340 1.9 300 450 @ 4.38

AN AW —

1) DATA
The data used to simulate the system are similar to those of
previous studies [11], [12], [43], [48]. Table 1 lists the data
about the six components used to simulate the system.
Durations of maintenance activities, d;’s in Table 1, are
assumed to be deterministic in the experiment. Testing of
the model assuming a stochastic duration d; of maintenance
activities was carried out and no meaningful effects on results
were observed; therefore, we report the results for the deter-
ministic case in order to avoid overparametrization of the
experiment.

2) GROUPING STRUCTURE OPTIMIZATION WITH

A GENETIC ALGORITHM

Grouping structure optimization is a complex combinatorial
problem. It has been demonstrated that similar optimization
problems [43], [44] are N'P-complete. The reason why we
decided to use a genetic algorithm (GA) in the optimization
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of the grouping structure is the known ability of GAs to find
(near-optimal) solutions for combinatorial problems, as con-
firmed by many authors [11], [17], [31], [43], [44]. In the
context of this research, the GA was written for this specific
purpose and includes a feasibility check of the individual
solutions for the initial population in the hope of speeding up
the optimization. Further details on the GA implementation
can be found in the appendix.

The simulation procedure was implemented using the
object oriented programming approach in Python 3.7. The
realization of the discrete event simulation is based on the
Python library SimPy distributed freely under MIT license.

The total set of simulations required roughly 30 hours to
run on a desktop computer with the following characteris-
tics: 64-bit Windows Server 2016, Intel® Xeon® Platinum
8160 CPU 2.10 GHz, and 768 GB of RAM. The time to
run a single optimization of the grouping structure required
few seconds using the stall generations stopping criteria; that
is, the algorithm stopped after the best value had not changed
in the last 15 iterations.

B. SIMULATION RESULTS

The results of the simulations offer insight on the costs associ-
ated with different maintenance policies. As shown in Fig. 7,
the minimal repair policy (MRP) is the least efficient policy
with the highest cost in all cases, while the opportunistic
grouping policy (OGP) is the lowest cost policy. This result
is not completely unexpected since the OGP is the most
sophisticated policy. However, given the complexity of the
problem, it was not obvious, at least for us, to observe a linear
relation between setup costs and total maintenance costs.

8-10° [
=
z
@]
8 6-10°
=
<
5
£
=
4105 A&
| | | | | |

0 100 200 300 400 500 600
Setup Cost [$]

FIGURE 7. The average cost of maintenance with different policies with
respect to different set-up costs.

The analysis also returned the number and the type of
maintenance activities performed within the simulation hori-
zon. The number of corrective interventions was always
higher on average than the number of preventive interventions
for all the policies, as it is possible to see in Fig. 8.

colorblue It is possible to notice that the number of cor-
rective interventions increases as a function of the setup
costs. In fact, exploiting the grouping strategy can induce the
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FIGURE 8. The average number of maintenance activities divided by type.
The execution of PM on a group of components is counted as a single
maintenance activity.

algorithm to increase the risk of component failures. Also,
already with a small setup cost, e.g. S = 50, there is a
substantial reduction of preventive maintenance activities,
due to their grouping.

The values in Fig. 8 count the amount of groups, but they
provide no information on the duration of interventions and
on the number of components maintained within a group.
According to the MPR and GPa policies, CM activities are
carried out singularly, whereas according to OGP, a CM activ-
ity might involve multiple components; this difference signif-
icantly affects the availability of the system. The availability
of the system is a relevant and practical metric of system
effectiveness. Therefore the average availability produced
by each policy for each setup cost was measured. In this
experiment, the availability of a system at time ¢ (in the past)
corresponds to its state and is assumed to be binary, as follow:

A(t) = {1’

if the system was working at time ¢

0, if the system was not working at time ¢.

In particular, we are interested in measuring the average
availability of the system over the simulation horizon. This
is defined as follows [37]:

_ 1 Tend
A= —f A(t)dr. (19)

Tend — thegin Tbegin

where fpegin and 2,4 are the beginning and the end of the
simulation horizon, respectively.

The average cost of maintenance and the average availabil-
ity of the system were compared using a bi-objective analysis:
in Fig. 9, each policy is represented by a point in the cost-
reliability space at a given value of S. The coordinates of
each point are the average value of maintenance cost and
availability produced by the relative policy. Uncertainty about
cost and availability are not represented in Fig. 9 since the
standard deviations of the underlying distributions are too
small to provide clear information.

To achieve the best operating performance, a policy should
maximize availability and minimize the expected cost of
maintenance.

The results in Fig. 9 show that there is not a dominating
policy, and the final choice is a matter of trade-offs. This
result highlights the fact that the maintenance policies studied
so far aim at minimizing the maintenance cost, but they
overlook the availability of the systems.
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FIGURE 9. Bi-objective (cost vs. availability) comparison of policies for
different setup costs (N = 6). Costs are expressed in 1,000 units.

More specifically, the greater availability associated to the
GPa policy compared to the OGP may be due to the fact that
OGP tends to anticipate some maintenance activities on the
ground of purely economic reasons, but by doing so it results
in a larger number of maintenance activities which ultimately
leads to a worse availability of the system. Note that, with
large setup costs even the MRP beats the OGP in terms of
availability.

We also explored the case with N = 10 where four
additional components — with characteristics similar to the
already existing six — were added in the system. The results
are shown in Fig. 10 with three setup costs and strengthen
the results obtained with N = 6: in this case, the loss of
availability associated with the opportunistic policy is even
more evident.
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FIGURE 10. Bi-objective (cost vs. reliability) comparisons of policies for
different setup costs (N = 10). Costs are expressed in 1,000 units.

IV. DISCUSSION AND CONCLUSION

As recalled by George-Williams and Patelli [15]: “iden-
tifying the optimal maintenance strategy is a challenge”.
In the hope of helping to solve this challenge, we presented
a comparative study of selected maintenance policies and a
framework for analyzing them. The policies were tested in
an operational environment with randomly generated faults
by means of discrete event simulations. The results clearly
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indicate that there are tangible cost savings that can be
reached by using maintenance policies based on taking an
opportunistic approach for grouping of maintenance activi-
ties. In this sense, this study brings new numerical evidence
to support the importance of grouping activities to save on
maintenance costs. On the other hand, simulations showed
that the majority of maintenance intervention was corrective,
as confirmed by Fig. 8. This means that scheduling PM activi-
ties according to (10) leads to the execution of a few groups of
PM activities along the simulation history; the opportunistic
approach is thus particularly useful in practice, when there is
uncertainty about which components to maintain in case of
a sudden failure. On the other hand, the implementation of
a monitoring system and a so-called condition based mainte-
nance (CBM) approach would help optimize the PM schedule
by detecting a state of imminent failure of a component.
The importance of anticipating a near-to-failure condition is
corroborated by the non-negligible amount of CM activities
shown in Fig. 8. We conjecture that, in a real-world applica-
tion, the opportunistic policy would benefit from CBM either
by lowering the cost due to unplanned shutdowns, and by
relieving their technical consequences. Thus, our results can
be also interpreted as additional evidence pushing towards the
adoption of condition based maintenance systems.

A further step to approach maintenance to reality is the
implementation of imperfect maintenance interventions. The
as-good-as-new assumption for repair of components could
be relax through the addition of a significant number of
new parameters: random variables to describe the degradation
level of a component [42], new TTF distributions for imper-
fectly repaired components [25], and additional repairing
costs. Moreover, imperfect maintenance models have already
been extensively addressed in the literature [34], [46], and,
in the context of this research, a maintenance policy imple-
menting imperfect maintenance interventions would be of
little help to clarify our contribution on the comparison of
maintenance policies.

Nevertheless, by extending the analysis to consider also
the average availability of the system we were unable to
find a dominating policy (in a Pareto efficiency sense). This
corroborates the importance of a careful a priori selection
of the preferred policy considering the preferences of a deci-
sion maker in terms of cost vs. availability trade-off. Hence,
in practice, as argued in the introduction, the discrete event
simulation methodology employed in this paper can be seen
as a valuable support to choose the most suitable maintenance
policy to any given context.

Besides its use to obtain the results analyzed in the pre-
vious section, it is possible to imagine that the presented
methodology has at least two more uses. Firstly, it can be
employed, for budgetary purposes, as a predictive analytics
tool to forecast the expected maintenance costs for a given
period of time. Secondly, it can be used in prescriptive ana-
Iytics to optimize maintenance schedules. In fact, despite
the long time required by our simulations (about 30 hours),
a single optimization of the maintenance schedule for the near
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future — i.e. an instance containing the next few PMs on all
the components — required few seconds both with N = 6
and N = 10 components.

Let us remark that, in spite of our simplifying assumption
that all groups of activities are feasible and the setup cost is
the same for all of them, our framework is flexible and can
encompass more specific cases. In fact, different setup costs
can be defined for different subset of activity, i.e. instead of a
single S we may have Sy VA C N, where N\ is defined as the
set of all components. This could be useful to model technical
dependencies between components. One use could be that
of assigning an extremely high setup costs to technically
unfeasible groups to make them non-optimal and therefore
never appear in the optimal maintenance schedule.

Further work is required to optimize the running time so
that more complex model environments become tractable.
This may include testing various optimization routines to
check which kind of optimization methods perform best in
the maintenance policy optimization environment.

Other topics for further research include making modifica-
tions to the maximum number of activities grouped together,
in order to be compatible with real-world shift duration,
and to be in sync with real-world availability of repairmen.
A more complex model could be built by including a connec-
tion to a spare parts management model or a workforce man-
agement model. One important avenue for further research is
taking the model to the real world and testing it with real data,
further enhancements could then, for example, also include a
prognostic learning model for the estimation of the useful life
of the components used.

APPENDIX: GENETIC ALGORITHM

The use of an heuristic method becomes necessary due to
the computational complexity of the problem, especially for
N = 10. We chose to represent the grouping structure SGM
using a vector of integer numbers. The list of activities (i.e. all
the activities on all the components) was sorted by ideal exe-
cution date ¢; and each element of the SGM vector encoded
the group to which one activity belongs. In the case of n = 6,
each group contains at most 6 activities, therefore a feasible
SGM consisted in a partition of the set of activities, where
each partition contains at most six activities. Each partition
was identified with an integer number, thus the resulting
vector looked like the following:

SGM =(1,1,1,2,2,2,2,...,5,5,6,6, 6).

The constraint on partitioning can be exploited to generate
new feasible SGM's.

The selection of parents for the next generation was per-
formed according to the wheel of fortune method, i.e. the
SGM's showing the highest scores were more likely to be
selected as parents for the next generation.

Both mutation and crossover operations were carried out
with respect to the structure of the solution. The mutation
operation required to choose a mutation point, which could
be each of the elements of the SGM vector. A single mutation
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occurred with a probability of 1 for all the selected individu-
als. The crossover operation was performed at a single point
of the SGM vector on a selected pool of individuals in order
to produce the desired number of modified individuals.

An elitist strategy was adopted, therefore the individuals
with the best fitness score were copied to the next generation.

Finally, the adopted stopping criterion was generation
limit. That is, the algorithm stopped if the average relative
change in the best fitness value did not change for more than
15 generations.
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