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Abstract
Optimization of operations and maintenance (O&M) in the industry is a topic that has been largely studied in the literature.
Many authors focused on reliability-based approaches to optimize O&M, but little attention has been given to study the influ-
ence of macroeconomic variables on the long-term maintenance policy. This work aims to optimize time-based maintenance
(TBM) policy in the mining industry. The mine environment is reproduced employing a virtual model that resembles a digital
twin (DT) of the system. The effect of maintenance decisions is replicated by a discrete event simulation (DES), whereas a
model of the financial operability of the mine is realized through System Dynamics (SD). The simultaneous use of DES and
the SD allows us to reproduce the environment with high-fidelity and to minimize the cost of O&M. The selected illustrative
case example demonstrates that the proposed approach is feasible. The issues of using high dimensional simulation data from
DT-models in managerial decision making is identified and discussed.

Keywords Maintenance optimization · Digital twin · Simulation · Optimization

Introduction

Managing large industrial plants in global competition
requires a clear strategic view and a high level of control of
operations. Anytime an industry relies on its physical assets,
the success of operations is tightly linked to the execution
of the right level of maintenance. Maintenance has both the
role of keeping an asset in its best condition and to minimize
unforeseen system downtime. From a managerial viewpoint,
operations andmaintenance (O&M) cannot be thought in iso-
lation from the economic contextwithinwhich every industry
operates: a coordinated view of O&M should aim at reaching
the right amount of responsiveness and throughput of a sys-
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tem that is required by the prevailing market conditions. In
this research, the issue is investigated using an example from
the metal mining industry, where efficient real-time manage-
ment of operations is essential to meet the production targets,
but where ultimately macro-economic variables, mainly the
price of the metal, play the key role in bottom-line profitabil-
ity in the long-term.

As stated by Bevilacqua and Braglia (2000) and Mobley
(2002),maintenance costs can rise to 60%of total production
costs. This cost itemcanbe affected in the short- andmedium-
term by planning and optimization - unlike many other
major costs of industrial operations that are fixed in nature.
Despite the importance to plan operations for the impact
on long-term profitability, there is only a limited amount
of literature on the topic, except for Topal and Ramazan
(2010) who introduced a model to estimate maintenance
costs in a 10-years mine lifetime. Furthermore, considering
multi-machine environments, the sheer size, and the resulting
complexity due to a high number of uncertainties is a major
hurdle for model development (West and Blackburn 2017).
Addressing a company-wide problem-setting, like managing
real-time operations and maximizing long-term profitability
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in a dynamic economic context, requires the help of both
advanced analysis methods and control tools. We address
the topic using a Digital Twin (DT) modeling concept that
is used here in a meaning discussed by, e.g., Rosen et al.
(2015), Grieves and Vickers (2017), to refer to “intercon-
nected and multidisciplinary simulation models usable for
operations optimization on a system level”. In a recent review
ofKendrik et al. (2020) five use-categories of DTswere iden-
tified of which the manufacturing stage and usage stage of a
system is addressed in this paper.

A DT is a digital model of a physical entity (Negri et al.
2017; Tao et al. 2018; Redelinghuys et al. 2020) providing
human-readable, semantic, data-model of reality (Negri et al.
2017; Kunath and Winkler 2018). These models reside in a
high-performance, usually cloud-based, computing environ-
ment and they can be used for several types of optimization
purposes (Negri et al. 2017; Tao et al. 2018; Cimino et al.
2019; Madni et al. 2019). Kendrik et al. (2020) highlight the
importance of the digital counterpart of a system to optimize
production performance and maximize profitability, which
is the goal of the proposed model. The origins of DT can
be traced back to the beginning of the 2010s in the avia-
tion and aerospace industry. The early publications (Tuegel
et al. 2011; Shafto et al. 2010) revolved around the possibil-
ities of using ultra-high fidelity models to simulate aircrafts’
maintenance under dynamic operating conditions over the
equipment lifetime. In this vein, Kritzinger et al. (2018)
highlighted the communication aspect between physical and
virtual spaces claiming that only models transmitting data in
and out from the virtual space can be regarded as DTs. The
latter should not be confused with general digital models
(no data connection) or digital shadows (only physical-cyber
connection). The requiredfidelity level inDTmodels remains
debated and, in this research, we agree with the claim by
Wright and Davidson (2020) that “digital twins can use any
sort of model that is a sufficiently accurate representation of
the physical object being twinned”.

This paper focuses on the question of building and uti-
lizing multi-domain simulation models that would integrate
O&M simulation optimization with the overall profitability
simulation of industrial operations in a way that could be
referred to as Digital Twin. For the sake of brevity, we limit
our scientific inquiry to the context of the mining industry.
To answer the research question, a two-phase methodolog-
ical approach is adopted. First, the general properties of a
co-simulation framework are investigated, and references to
the relevant literature are provided. Second, an experimental
DT model is developed on a virtual case study: a metal mine
is considered due to its specific nature of O&M, and because
its profitability is directly linked to the price of metal(s),
which is a macroeconomic variable. To answer the question,
this study presents a conceptual “digital twin” for metal min-
ing that connects a detailed, minute-per-minute maintenance

model of mobile equipment to a monthly-level profitability
analysis of metal mining operations. In the model, two sepa-
rate simulationmodules are included: anO&Mmodel, which
replicates with high fidelity the effects of O&M decisions,
and a managerial cash flow (CF) model, which is used to
support decision-making at the production system level. In
a co-simulation context, both models are treated as separate
simulation units (SU) and when these SUs are considered as
a whole, a dynamic system is created (Gomes et al. 2018).

This allows us to replicate a DT model’s operational
workflow and software pipelining in a controlled environ-
ment, where the O&M model optimizes some of the key
system parameters before running the CF simulation for the
high-level mid-term economical aspects of the system. The
complexity of the system under study is a major reason to
adopt a DT-inspired view: where it is not possible to express
relationships analytically, a DT can help to integrate data
from the field with flexible simulation tools, to achieve an
overall improvement of the system’s profitability. Therefore,
the goal of this work is to:

– Demonstrate that the DT approach in the context of metal
mining operations provides a holistic method to opti-
mize its overall operational profitability under economic
uncertainty of metal prices and maintenance costs.

– Point out and discuss the limitations of simulation based
digital twins, when it comes to managerial decision mak-
ing based on multidimensional information.

This paper continues with a brief introduction to the con-
cepts of O&M planning in multi-equipment systems and
somegeneral considerations about systemdynamicsmethod-
ology in Sect. 2. In Sect. 3, a literature study on the topic of
O&M simulation and DT modeling is provided to set the
ground for model building. In Sect. 4, a detailed description
of themodels–namely theO&Mmodule and the CFmodel—
is provided. This is followed by the empirical application of
the model, the validation of the proposed model through two
experiments, and a detailed analysis of the results in Sect. 5.
The paper closes with conclusions and discussion in Sect. 6,
where some strategic considerations are derived from the
results of numerical experiments.

Theoretical Background

Machine specific maintenance histories can be tracked with
high accuracy using data series of sensory information
togetherwithmaintenance reports from existing databases. A
windowof opportunity exists to use this accumulatedmainte-
nance information in connectionwith theDTmodel depicting
the behavior of the overall system. From the reliability-theory
point of view, a large-scale industrial system can be mod-
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Single-item System

System boundary

Unit U1

(a) A single-item system.

Multi-item System

System boundary

Unit U1 Unit U2

Unit U3 Unit U4

(b) A multi-item system.

Fig. 1 A schematic representation of single- and multi-item systems

eled using a multi-item systemmade of several non-identical
components,which are characterized by a common set of fea-
tures, but with proprietary parameters for each feature. Two
common examples of such features are the service time, and
the time to failure (TTF)-distributions. In a single-item sys-
tem, which can be depicted as in Fig.1a, maintenance can
be optimized knowing the TTF distribution and the cost of
corrective maintenance.

On the other hand, multi-item systems are sets of com-
ponents considered as a whole, and they can be represented
as in Fig. 1b. One peculiarity of multi-item systems is that
very often there is a convenience to carry out maintenance
simultaneously on groups of components: since compo-
nent dependencies of different natures exist – i.e. economic,
stochastic, or structural (de Jonge and Scarf 2020) – they
can be exploited to minimize maintenance costs and system
downtime.

In multi-item systems, maintenance activities and regu-
lar operations can be organized according to a maintenance
strategy, which determines the rules for scheduling of both.
According toAlrabghi andTiwari (2016), there are two broad
classes of strategies: time-based maintenance (TBM) and
condition-based maintenance (CBM) strategies. Both types
of strategies include the possibility to perform corrective
maintenance (CM) and preventive maintenance (PM) inter-
ventions, where the latter kind of activities are justified by the
lower cost of stopping the system and inspect/maintain com-
ponents before they fail. From the economic point of view,
skipping PM can save money in the short-term, but exposes
to the risk of more expensive breakdowns in the mid- and
long-term.

The major difference between TBM and CBM is the prin-
ciple that rules decisions: to plan maintenance activities,
TBM uses only the work time, whereas CBM exploits also
information on the degradation of a component. Depending
on the cost and the risk generated by the fault of an item,

both strategies are valuable. Concerning multi-item systems,
the state of the art for both types of strategies were reviewed
several times in the past (Cho and Parlar 1991; Dekker et al.
1997; Wang 2002; Nicolai and Dekker 2008; de Jonge and
Scarf 2020).

A recurrent critique of many multi-item models, which is
partly addressed in this paper, is the lack of integration with
other fundamental parts of an industrial system—e.g., spare
parts and inventory management, human resources manage-
ment, or planning of operations. Alrabghi and Tiwari (2015,
2016) confirm this by stating that the isolation ofmaintenance
management systems is a limit to their use in practice. The
experiment design used in this research resembles the one
proposed byAlrabghi andTiwari (2016) for TBMbut contex-
tualized and integrated with higher-level decision-aid tools.
The DT framework offers the right testbed for simulation-
based production optimization (Uhlemann et al. 2017), and
for studying the integration of systems, hence to overcome
system isolation.

To deal with the model integration issue, the Sys-
tem Dynamics methodology, originally coined by Forrester
(1961), is used in this study. SD is suitable for representing
the behavior of complex systems with delays and feedback
loops that are constructed using intuitive graphical flowsheet
diagrams (Forrester 1994). Within engineering sciences, SD
has been traditionally viewed as a high-level managerial
method, which is subordinated to fast-to-run, discipline-
specific computational models; however, SD has also been
applied in several operations research (OR) applications,
which were reviewed by Größler et al. (2008). In this paper,
the role of the system dynamic model is to serve as a seman-
tic data interface to the overall production system, where all
the relevant sub-model(s) can connect.

In this paper we focus our scientific inquiry to the context
of metals mining, where the role of equipment reliability is
highlighted by the complexity of advanced machinery, and
the pressure to meet the production targets (see discussion,
e.g., Dhillon (2008)). In real mining systems, data-driven
analysis of maintenance policy optimization faces the prob-
lem of the reliability behavior of equipment. As a key
challenge to maintenance, Hall and Daneshmend (2003)
point out that the number of (semi-)mobile equipment hinders
the collection of “clean” datasets. Data collection may also
be inhibited by the failure of electronic-based hardware (e.g.
sensors, wiring, connectors, etc.), which is common in harsh
mining environments (Dhillon 2008). The estimation of the
near-future degradation state ofmachines and the forecasting
of their most likely end of life require the use of simulation,
which is recognized as a main aspect of a DT (Negri et al.
2017; Kritzinger et al. 2018; Tao et al. 2018; Cimino et al.
2019). For these reasons, we consider our model eligible to
operate as a DT, although the experiments that are presented
in the following do not rely on a real-world physical sys-
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tem, and a proper product data management system is not
implemented.

Literature Study

To clarify the connection of this work with the existing lit-
erature, a brief study on the topic of simulation-based DTs
and maintenance was conducted. An overview of the mod-
els involved in manufacturing system design and operation
using DES is provided by Negahban and Smith (2014), who
observed that there is an on-going shift tomaintenance issues
and real-time control. In this vein,weused the following three
combinations of keywords to conduct an inquiry on the search
engine Scopus: i) “digital twin”, “simulation”, and “mainte-
nance”; ii) “digital twin”, “co-simulation”, “maintenance”;
and iii)“co-simulation” and “maintenance”. Based on their
relevance to this research, 30 documents were selected and
listed in Table 1.

The columns “Digital Twin”, “Maintenance”, and “Co-
simulation” are flagged if the keyword represents a relevant
topic in the document. The columns “Review”, “Method-
ology”, and “Application Case” indicate if the document
includes a review of the literature, a contribution to method-
ological aspects, or the presentation of a use case.

Based on the literature study, the number of publica-
tions concerningDTs and simulations forO&Moptimization
increased during the last ten years, as depicted in Figure 2.
The majority of the published documents are represented by
conference proceedings although the relative share of jour-
nal articles has been in a steady increase during the period
of 2017-2020. This suggests that the relevance of the topic
is being identified in the scientific community.

The content analysis reveals that most of the works (in
Table 1) aim at developing technical models of mechan-
ical, electrical, aerospace, and transportation systems, but
only a few documents specifically addressed the combina-
tion of technical and economic aspects. There seems to be
a common understanding that maintenance optimization has
a central role in DT models, together with the general aim
to improve operations and managerial prediction capabili-
ties. The latter topic heavily relies on the simultaneous use
of several simulation tools, but there seems to be little aware-
ness of the co-simulation context that emerges. To verify this
observation, our initial research query “i)” was tested by sub-
stituting the keyword “simulation” with “co-simulation”: the
low number of documents found suggested a lack of general
frameworks when co-simulation models are part of a DT.

Outside the context of DTs, the principles and properties
of a co-simulation model have been systematically surveyed
by Gomes et al. (2018), who highlight the ability to apply
separate, “black-box”, simulation units as building blocks
of a large (co-)simulation. This aspect is of particular impor-

tance in the real world, where simulation tools for prognostic
and health management (Peng et al. 2010; Kim et al. 2016)
might come from different developers and they need to be
integrated. Several documented industrial applications of co-
simulation models within the period 2011-2016 are reported
in Gomes et al. (2017).

The documents resulting from query “iii)” are similar to
the references mentioned by Gomes et al. (2017) in their
literature review. A closer look at these documents reveal
that co-simulation models are often “stand-alone” works
that do not present a connection with a physical model. In
other words, although the potential of co-simulation mod-
els in maintenance optimization is clear, there is a lack of
research efforts describing how these technical-economic
models would be structured and how they would play out.
This research work aims at contributing to close this gap by
considering simulation optimization of O&M as part of a
DT, and by addressing the issue according to the principles
of co-simulations.

Data andMethodology

This research addresses the problemof designing aDT,which
comes down to the ability to be able to simulate and opti-
mize several models (co-simulation). Such models are not
directly integrable due to their fundamental basis (such as
software, modeling choice, and the level of detail), and they
need to share information in an uncertain/probabilistic envi-
ronment. Two models are co-simulated in this research: i) an
O&Mmodel, and ii) a managerial CF model, which operates
high-level decisions based on generated CF and exogenous
economic variables. The fleet capacity optimization is used
as a means to achieve the economic goals: if there were to be
two alternative fleets that meet a production target, the one
producing the higher CFwould be selected. A schematic dia-
gram of the problem setting is illustrated in Figure 3, where
the connections between separate steps are shown.

Inputs of the Digital Twin model consist of the system
design and maintenance policy selection, which are marked
with (i) and (ii) in Figure 3. These are used to feed the soft-
ware module (iii) that replicates the operations of a metal
minemodeledwith aDES. The performance ofO&M is eval-
uated by running aMonte Carlo simulation (MCS) according
to the given design and policy selection. The maintenance
model can be run with an optimization procedure auto-
matically changing the system design – i.e. the number of
resources in the mine, to reach a target value of ore excavated
at the minimum cost. The aggregated information produced
in (iii) is fed to the managerial feasibility model (v) with
economic uncertainties included (iv). The aggregated sys-
tem output is formed ((vi) in Figure 3), which can be, in case
of operating the DT-model continuously, further looped back
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Fig. 2 Number of documents in Table 1 divided per year. “2020” rep-
resents the year-to-date in August

to the maintenance module to revise the policy until conver-
gence of results is reached. Once an optimized maintenance
policy is found, it can be used to control the physical system.

Weacknowledge that themulti-disciplinarymodel applied
in this paper is limited in nature, and we suggest that this
model could be referred to as “low fidelity digital twin” (see
discussion, e.g., Tuegel et al. (2011)) to distinguish themfrom
the envisioned “full-scale” DT implementations including a
wider range of simultaneously operating, high-fidelity, dis-
ciplinary sub-models.

MaintenanceModule

The justification to use simulation-optimization to model the
mine environment in this paper emerges from two reasons:
the lack of analytical expressions to model operations, and
the need to adapt the configuration of resources to meet
the production targets. The module aims at optimizing the
maintenance policy, which is a set of heuristic rules to make
maintenance decisions. The inherent complexity of the sys-

tem makes it impossible to determine in advance the effects
of the proposed maintenance policy, therefore, O&M of a
mine’s load and haul process is replicated using DESs in
a Monte Carlo simulation experiment. Notwithstanding the
possibility tomodel the environment down to tiny details, the
degree of approximation was arbitrarily chosen to provide a
realistic amount of complexity in a reasonable amount of
time. For a further discussion on the simulation detail-level,
the interested reader should refer to, e.g., Zio (2009).

System components are distinguished by type, which
defines the available actions when they interact with each
other. The elements used to simulate the operations of the
mine present a unique behavior, and they are divided in
two macro-categories: the first is server-queue components,
which include shovels, dumpsites or discharge points, and
workshops; in this research, server-queue components are
represented as in (Law et al. (2000), pp. 12-18). The second
category is represented by agents, i.e. trucks for transporta-
tion of the excavated material around the mine. According to
Law et al. (2000) an “agent is an autonomous “entity” that
can sense its environment, including other agents, and use
this information in making decisions. Agents have attributes
and a set of basic if/then rules that determine their behav-
iors.” The agents can travel between each couple of sites in
themine, and the traveling distance between sites is described
by log-normal distributions. This choice allows us to sample
the travel time from one site to the other in a realistic way.

The behavior of an agent, i.e. a truck, is characterized by
the parameters of the processing time distributions described
in the following.A truck isunreliable in the sense that itmight
fail at any moment during operation, and the time to failure
(TTF) is a random variable modeled using a two-parameter
Weibull distribution

W (t;α, β) = β

α

(
t

α

)β−1

exp

(
−

(
t

β

)α)
(1)

(iv) High-fidelity 
Maintenance Model 
(volume)

(v) Low-fidelity 
Profitability 
Model (cash flow)

(iii) Economic 
uncertain�es

(i) Maintenance policy selec�on 
(dynamic performance)

(ii) System design (equipment 
count with nominal capaci�es)

(vi) Aggregated 
System-level 
output

Policy revision (feedback)
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of suggested 
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PHYSICAL SPACE

VIRTUAL SPACE

Fig. 3 A schematic illustration of the adopted modeling approach
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ServerQueue

A1 A2 A3 A4 Ai AN

Fig. 4 A schematic representation of a server-queue entity (shovels,
dump sites, and maintenance workshops)

where α > 0 is the shape parameter, β > 0 is the scale
parameter, and t is the time elapsed since the lastmaintenance
intervention. The time to repair (TTR) is different in case
of corrective and preventive maintenance, and it is modeled
using a log-normal distribution

LogN (t;μ, σ) = 1

t σ
√
2π

exp

(
− (ln(t − μ))2

2σ 2

)
(2)

where the parameter μ is the mean of the distribution,
σ is the standard deviation, and t is the duration of the
maintenance intervention. Each truck is characterized by its
capacity, which varies depending on the truck model, and a
cost for both preventive CT

P and corrective CT
C maintenance

interventions. From the practical point of view, the selected
TTR-approach allows us to take advantage of the cumulated
maintenance data as the peculiar characteristics of each piece
of equipment can be represented.

An agent can be served by server-queue objects, i.e.
by shovels, dumpsites, and workshops, which are modeled
according to the well-know queueing theory (Law et al.
2000). A server-queue entity presents a waiting room, the
so-called queue, where the agents, or customers, wait their
moment to be served by the processor, the so-called server.
Figure 4 gives a schematized representation of the server-
queue object, where the agents are represented by the circles
and they join the queue at an unknown arrival rate. Customers
are served according to a first in first out (FIFO) logic at a
serving rate that changes depending on the type of customer.

The three classes of server-queue components present
subtle differences. Shovels were modeled as server-queue
objects with log-normal serving time distributions, and they
presented the peculiar hallmark of unreliability: as in the
real world, they were subject to the aging process, hence
they could unexpectedly fail, or they could be preventively
maintained. Therefore, in addition to the serving time, shov-
els are characterized by a TTF probability density function,
which is modeled using Equation 1. When a shovel becomes
unavailable due to maintenance, it changes its behavior to
that of an agent and it enters the maintenance workshop with
maximumpriority. The trucks in the queuewait for the shovel
to be available again and no other trucks are assigned to that
shovel untilmaintenance ends. Shovels are thus characterized
by a cost for corrective CS

C and preventive CS
P maintenance

in addition to TTF and TTR distributions. As soon as the

Si
Di

Wi

Shovel
Dump site

Workshop

to dumpsite

to loading

to preventive
maintenance

to corrective
maintenance

to loading

Fig. 5 Scheme of the agent’s movements on a map inside the mainte-
nance module between its sub-systems. Si represents a generic shovel
site, Di represents a dump site, and Wi a workshop

maintenance activity is completed, the shovel is considered
available again and trucks can start to join the queue and to
be processed.

Workshops are characterized by a FIFO logicwith priority
for the management of the queue (shovels with maximum
priority), and they present a peculiar behavior concerning
the processing time of a customer, i.e. a truck or a shovel.
The service time is a function of both the type of item served
(truck/shovel) and the type of maintenance intervention, i.e.
corrective or preventive. Finally, dumpsite components are
characterized by a log-normal service time distribution and
by the presence of a stockpile; each stockpile has a limited
capacity and all the stockpiles feed a single concentrator plant
with a specific capacity of material per unit of time. The
detailed modeling of the concentrator plant, with equipment
such as crushers, conveyor belts, mills, flotation tanks, etc.,
is left out of the scope of this paper and it is assumed to work
without interruptions.

A DES experiment was designed to replicate system
operations with a high level of detail. Within the simula-
tion procedure, all the entities interact with each other as
described and illustrated in Figure 5. The mine mainte-
nance simulation is initialized by defining the parameters of
the probability distributions; the TTF and TTR distribution
parameters are listed, togetherwith the costs formaintenance,
in Table 3 and Table 4 in Appendix A. Trucks are also char-
acterized by a transportation capacity, which is a random
variable sampled from the distributions reported in Table 3
in Appendix A, whereas servers are characterized by a serv-
ing time distribution, which parameters are listed for shovels
and dumpsites in Table 4 and Table 5 in Appendix A respec-
tively. The parameters listed above remain, together with the
duration of the simulation horizon, un-changed for all the
runs of the experiment.

Once the simulation is initialized, a truck gets assigned to
a target shovel Si (see Figure 5), thus it travels to the designed
site and it joins Si ’s queue. After being processed at a load
site, a truck can leave the site due to two reasons: it can
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either fail unexpectedly and thus being sent to a workshop
Wi in Figure 5 for CM, or it can be sent to a dumpsite Di

in Figure 5 for unloading. After the unloading, a heuristic
decides if the agent must be preventively maintained, or if it
can continue its regular operation. The decision to submit a
truck to PM is based on the age of the truck, namely a TBM
policy is adopted. If the threshold value pi for the i-th agent
is lower than the time elapsed since the last maintenance
intervention, it undergoes PM, otherwise, it is assigned to a
new load site. The maintenance policy can be represented by
a list, whose components p j

i are the PM thresholds for trucks
T and shovels S, and it can be represented as follow:

P = [pT1 , pT2 , . . . , pTNT
, pS1 , pS2 , . . . , pSNS

] (3)

where NT is the number of trucks, and NS is the number
of shovels in the system.

When a CM or PM intervention is due on a truck, a
workshop Wi processes the agent according to the type of
maintenance needed and to the TTR distribution of the spe-
cific agent. Once the truck has been maintained, its condition
is considered “as good as new” from the modeling perspec-
tive and it is ready to start a newmission. Amission is defined
as a chain of actions that includes the travel to a shovel site,
the waiting time in queue, the loading and unloading opera-
tions.

The shovel’s mission is less detailed than a truck’s mis-
sion: each shovel simply operates at its site until a failure
occurs, or until it is sent to a workshop Wi for PM. When
a truck has been loaded, the age of the shovel is checked
against the age threshold pSi and, in case the time elapsed
since the last CM/PM intervention exceeds pSi , it is sent to a
workshop Wi with maximum priority, thus preempting each
other agent in the queue.

The performance of the system was optimized based on
the results of a MCS experiment. Given the stochastic nature
of a DES, the problem consists in the minimization of the
expected value of the cost of operations J (θ), and it can be
formalized as

Z = min
θ

E[J (θ)]

where θ is a vector containing the system parameters that
define the number of trucks NT and shovels NS , and themain-
tenance thresholds P . The problemmust be solved under the
constraint of reaching a production target Xmin :

Pr{X ≥ Xmin} ≥ 0.95.

That is, the probability that the output X satisfies the tar-
get Xmin must be greater than 95%; such probability can be
calculated using the 95th percentile of the output distribution
from the MCS experiment.

To minimize the objective function means to act on two
aspects of the model: the number of resources operating in
the system and the number of unplanned downtimes. The
former is minimized using an enumerative search algorithm,
while the second is optimized using a more complex genetic
algorithm for search over a stochastic response surface.More
details about both procedures are provided in Appendix B.

The code1 used to implement the algorithms described
above is written in Python 3.7 and mostly using SimPy sim-
ulation library.

Cash FlowModule

The use of system dynamics methodology allows building
a compounded, close-to-reality representation of the mining
operation that is still easy-to-read and modify compared to
writing the model as software code. Detailed SD feasibility
models of mining have been introduced in the literature by,
e.g., Inthavongsa et al. (2016), Savolainen et al. (2017), who
showed the flexibility of the approach and its ability to cope
with complexity.

For the sake of brevity, the CF model used in this paper
includes only two uncertainties: the metal price and main-
tenance cost. The simulation horizon is limited to one-year,
and a geometric Brownian motion with and without trend is
assumed to represent the uncertainty of markets adequately
(for discussion see, e.g., Labys et al. (1999), Roberts (2009),
Rossen (2015)). An example price simulation used in the
experiments is illustrated in Figure 6 with three alternative
price trend scenarios for a single random price realization.
The uncertainty ofmaintenance costs aremodeled as triangu-
lar distributions using expert estimates, which are introduced
in more detail in Section 5.2.

A representation of the function block diagram of the
applied CF model is provided in Figure 7. The model is
divided into two sections: technical and economic models,
where the inputs of the mine maintenance module are fed
(blocks of the flowsheet marked with blue background). For
a full list of parameters see Table 6 in Appendix C.

One of the key output variables of the CF model is the
average mill utilization rate. That is, at any point in time,
the mill utilization rate is either zero or one depending on
the level of the ore stock that is replenished by the truck-
shovel system. We exclude the option to increase the size
of temporary ore stock giving additional flexibility to main-
tenance timing, which is often used in small mines. In our
case, the stock is limited to ≈ 27, 500 tons of ore, which
corresponds roughly to 36 hours of production in the mill.

1 All the libraries used to realize the simulation optimization
experiment are released under a MIT license, and a copy of
the code and the relative documentation is freely available at
https://github.com/mikiurbi/mine_digital_twin.
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Fig. 6 A random metal price
array simulated using geometric
Brownian motion with 10%
volatility and three alternative
trend assumptions (±10%/yr
and 0)

Fig. 7 A flowsheet of the managerial CF model to estimate the economic feasibility of the operations. The input values from the O&Mmodule are
marked using a grey background

The key added variables from the CFmodel include the costs
of equipment leasing, fuel costs derived based on the O&M
model’s indicated operation hours, and other fixed costs such
as buildings, and administration. The output price of metal
is updated weekly.

We acknowledge that the above-described model con-
struction, including the detailed operations & maintenance
model using discrete event simulation and system dynamic
cash flow modeling, could be fully implemented in a single
software environment. In practice, this is usually not possi-
ble, which calls for the DT type of co-simulation approach.
The reasons for this can be related to an unwillingness to
share confidential financial information (from mine operator

to the model owner), the effort of transferring existing pieces
of core software libraries from one environment to another,
and importantly, as pointed out by, e.g. West and Blackburn
(2017), the uncertainty of financial return of the software
product.

Model and Application

In this section, the O&M simulation optimization module’s
behavior is first validated with two sensitivity analyses and
then used in concert with the SD model to run three exper-
iments in a DT system setting. The mine configuration in
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Fig. 8 Sensitivity analysis for the trade-off between CM and PM cost
in the maintenance module

these tests varies from one experiment to the other, and the
number of components in the system is kept low to avoid
over-parametrization of the model (see discussion, e.g., (Zio
2009).

MaintenanceModel Validation

A simple sensitivity analysis was performed to validate that
the lower the age threshold for PM, the higher the possibility
to avoid unplanned downtimes. On the other hand, the higher
the age thresholds, the less effectivePMshould be in reducing
costs. To validate this hypothesis, themaintenance thresholds
of all the items were parameterized as follows:

p j
i = a MT BFi ,

where i identifies the item, j is the class T for trucks or S
for shovels, and MT BFi is the mean time between failure
of the i-th item. The parameter a ∈ (0, 3] is a scale factor
that allows to vary the age threshold p j

i of all the equipment
included in the experiment in question. By parametrizing the
age thresholds, itwas possible to estimate both the cost ofCM
and PM for the whole system by changing only the parameter
a. In all the other experiments, the cost of CM/PM depends
also on CC , CP , and on the TTF distributions, but here these
parameters are fixed. The sum of the cost of PM and CM at
different values of a are plotted in Figure 8.

The fleet used to realize the sensitivity analysis included
two trucks and one shovel. When the age thresholds are very
low (� MT BF) the cost of PM is high because PM events
are carried out extremely often. However, the cost of PM
decreases sharply when a increases and, with maintenance
thresholds p j

i equal to 0.5 times the MT BF values, the cost
of CM starts to be higher than the cost of PM, thus making it
inconvenient to perform PM more rarely. As it is depicted in
Figure 8, the total cost of maintenance presents a minimum
cost as a function of PM and CM, which makes clear the

need to optimize the PM age threshold of all the items before
running the whole simulation procedure.

A second maintenance model validation experiment was
carried out to test the performance of the systemwith varying
maintenance resources; in particular, the difference between
two- and three-workshops configurations were analyzed. A
total of sixty configurations were tested, namely all the pos-
sible combinations of 2 or 3 workshops, 1 to 10 trucks, and
1 to 3 shovels. The statistics used to present the results are
the average throughput and the average cost of maintenance
obtained from 50 simulations over a 2-year time horizon.
For each configuration, the maintenance thresholds p j

i are
optimized and then the DESs are run.

Since the dumpsites present limited capacity, i.e. mate-
rial excavated cannot exceed the mill production rate, the
configurations with two and three maintenance workshops
produce different results. As shown in Figure 9, many sys-
tem configurations deliver the maximum possible amount of
material, but at different costs. Interestingly, highly differ-
ent configurations lead to similar results: for instance, the
2-workshops 3-shovels and the 3-workshops 1-shovel con-
figurations deliver almost the same throughput at the same
cost using a similar number of trucks. The two solutions are
however very different from a managerial point of view: the
investments required to purchase or to rent the equipment,
the skilled personnel needed to operate the facilities, and the
resilience of the resulting system are meaningful aspects to
be considered.

The above-mentioned issues go beyond the reasonable
modeling scope of the DES, but these are the issues that can
be easily integrated into the managerial profitability model
to produce further insights to support operational decision-
making. In a dynamic economic environment, provided by
the SD, the proposed analysis can be repeated with better
implicit knowledge of the production process, such as pro-
duction targets and planned maintenance, thus producing a
probabilistic evaluation of the future scenarios.

Digital Twin Testing andValidation

The first experiment aimed to verify and validate the overall
DT approach, whereas the second experiment consisted of a
more detailed optimization of the system under the assump-
tion of uncertain maintenance costs. The parameters used
in the CF model are illustrative, and they were chosen in a
way that approximately 5-6 trucks (max. 10) with 1-2 shov-
els (max. 3) would satisfy the mill requirements for material
tonnage.

The fleet design study was carried out to screen all the
possible system configurations that can be produced by ten
trucks, three shovels, and the maintenance policies provided
in Table 2. In Table 2, the item ‘design optimization’ indi-
cates if the number of trucks and shovels is set already in
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Fig. 9 A multi-criteria comparison of different system configurations. Each point corresponds to a system configuration (number of workshops,
shovels, and trucks), and it is characterized by the average cost of maintenance and the average throughput of metal obtained over the simulation
horizon

the discrete event simulation. The configurations that have
a smaller number of trucks than shovels were discarded
manually as irrelevant, when the optimization option was
turned off. Three different maintenance policies were used:
a “max-corrective” (or “run-to-failure”), a balanced, and a
“max-preventive” policy. The first and last policy represent
the theoretical endpoints of the available scale of the simula-
tion space: according to the “max-preventive”, a PM action
is performed after every mission, whereas according to the
“max-corrective” the maintenance threshold is set (de-facto)
to as infinite. The balanced policy foresaw one PM event per
week of simulation. In a more advanced setting, the balanced
policy could be defined by the simulation-optimization algo-
rithm, which searches for the PM thresholds p j

i that return
the minimum expected cost of maintenance for a given con-
figuration. InExperiment 1,maintenance costswere assumed
to be fixed (known ex-ante), and the price trends were those
displayed in Figure 6. The number of simulations displayed
in the last row of Table 2 was determined by the number of
combinations, e.g., in experiment one with ’pre-optimized’
fleet design, the number of combinations to be simulated was

nine as only the number of maintenance policies multiplied
by the number of price trends.

Experiment 1 - Fleet design

Results of Experiment 1 without fleet optimization are
provided in Figure 10 which shows that the policies “max-
corrective” and “balanced”, with 6-10 trucks and 1-2 shovels,
would be the most profitable ones. It is noticeable that with
the given parameters of fixed costs, and duration of PM- and
CM-events, the “max-corrective” policy was favored over
the balanced option. The “max-preventive” policy produced
negative profits in all cases within the selected set of param-
eters, which highlighted the need for further maintenance
threshold optimization. That is, in this case, to maximize the
amount of preventive maintenance leads to the lost of overall
cost efficiency due to excess queuing times to the workshop,
whereas increasing the number of workshops in the initial
design would also have a bloating effect on operation’s costs.

The maximum profit of all tested configurations was
reached following the “run-to-failure” policy, which yielded
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Table 2 Key parameters used in the experiments

Experiment Exp. 1 Exp. 2

Experiment Name Fleet design Age-threshold optimization

Design optimization No (Yes) -

Maintenance policy {“max-corrective”, “max-preventive”, “balanced”} “balanced”

Maintenance cost {Fixed, Uncertain} Uncertain

PM frequency (estimate), events/wk 1 {0.125, . . ., 1} with step size of 0.125

Price trend {“increase”, “decrease”, “none”}∗ {“increase” }∗

# Simulations 248 (9) 221

∗: incl. 10%/yr volatility, where “increase” = +10%/yr, “decrease” = -10%/yr,
“none” = 0%
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Fig. 10 Experiment 1 results. The profits in millions of units of money over 52 weeks are plotted according to a maintenance policy and separated
by number of shovels used in the experiment

a 98% utilization rate of the mill with nine trucks and one
shovel, also denoted using the set {9, 1, 98%}. In rank-
ing of results, the price trend (see Table 7 in Appendix D)
had a clear effect: increasing price trend (+10%/year) would
suggest the {8, 2, 97%} as the second most desirable com-
bination, whereas decreasing and flat trends (-10% and 0)
would favor an option for the smaller fleet and lower mill
utilization rate {8, 1, 91%}.

To inspect the results of Experiment 1 in more detail, the
total number of maintenance events in the case of full PM
are plotted in Figure 11. Figure 11a shows that the “max-
preventive” policy, with a two-workshops design, is possible
only in the case of one truck and one shovel. As the number
of trucks increases, the relative share of CM actions goes up
since there is not enough capacity in the workshops (Figure
11b) for adequate equipment intake.

Such effect is further highlighted in the case of one shovel
andnine or ten trucks: the queuing time spent by trucks (either
at loading, unloading, or maintenance) increases, thus mak-
ing itmore probable for them to fail before the next scheduled
PM event.

In Experiment 1, the simulation-optimization algorithm in
the O&M model was also tested to screen out the infeasible
fleet designs already at the beginning of the simulation. The

maintenance optimization, as designed, favored the highmill
utilization rate options that were gained with eight to ten
trucks and one or three shovels (Table 10).

It is clear that the results of maintenance optimization
efforts are uncertain ex-ante even with the assumption of
fixed maintenance costs. To take a further step, the role of
cost uncertainty was included in the analysis by replacing the
fixed maintenance costs with triangular probability distribu-
tions in the CF model. These distributions are depicted in
Figure 12 using box-plot diagrams (for numerical values see
Appendix C), and they represent expert knowledge. In a real
case, these distributions could be derived from proprietary
maintenance data that are available from the organization’s
historical records.

The applied cost distributions of PM and CM differ in
shape. To reflect the risk of CM, the distributions of costs
have long tails that can produce up to five times the fixed cost,
whereas the positive risk of CM is limited to 1% respectively.
The PM cost distribution is weighted more in the center of
the distribution, thus giving less uncertain results on costs;
it is capped to a maximum of 1.1 times the original assump-
tion, and it can go below -10%. From the modeling point of
view, this setting creates a strong incentive towards accept-
ing preventive policies over the “max-corrective” given in
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Fig. 11 The limited capacity of
workshops illustrated using the
simulation statistics. Scenarios
are taken from results with full
preventive maintenance policy
settings using an
increasing-price array
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Fig. 12 Box-plot of probability
distributions for the prices of
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the first experiment. Another option for the inclusion of
cost uncertainty could be to include them in the O&M
optimization module that is run before the CF simulation.
However, this creates additional complexity to the genetic
algorithm used for O&M-model’s simulation optimization,
and it complicates the user’s abilities to interact with the CF
simulation experiments within the SD-flowsheet that steers
the CF model. A trade-off between model choice is made by
using averages of distributions based on 10,000 draws in the
optimization model (see Appendix B) and a single random
draw in the CF model, which makes it more volatile in terms
of results.

Running Experiment 1 with uncertain costs returned the
previously suggested outcome {9, 1, 98%} with no PM; this
was due to the limited workshop capacity as previously dis-
cussed (see Figure 11). Therefore, the question of optimal
maintenance policy boils down to finding out whether and
what is the optimal time between maintenance events that
would keep the amount of CM within reasonable limits.

Experiment 2 – Optimal Timing for Preventive Maintenance

The issue of optimizing preventivemaintenance thresholds is
addressed in this last experiment. The age threshold, marked
as n, for the PM event timing was set as a ratio versus one

round of simulation of the maintenance module. That is, a
value of n = 1means that there is approximately one preven-
tive maintenance event per week of simulation in the O&M
model, and n = 0.5 indicates one PM event every two sim-
ulated weeks respectively. In this experiment, n varies from
0.125 to 1.000 with a step size of 0.125.

The visual insights are provided in Figure 13,which shows
that the {9, 1, 91.6%} combination with n = 1 yields a profit
of approximately 30 million. On the other hand, the simula-
tion indicates another option with two trucks less, namely
{7, 1, 81.7%} with n = 0.875, that has only some 0.5
million profit less than the “best option”. From the decision-
making point of view, we can observe that the interpretation
and efficient utilization of simulation results becomes dif-
ficult because of the high number of co-existing solutions.
In this vein, as previously discussed by, e.g., Negahban and
Smith (2014),Min et al. (2019), there is an increasingdemand
to implement meta-model based solutions to simplify sim-
ulation data of DT-models into implementable managerial
insights. This issue is, however, beyond the scope of this
paper.

As depicted in Figure 13, maintenance policies with
n ≥ 0.5 seem to deliver the best performances in terms
of profitability and utilization and, furthermore, a positive
relationship between the mill utilization and a high num-
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Fig. 13 Profit as a function of fleet configuration and maintenance policy n, where n represents the number of preventive maintenance events per
time unit (in this case one week)

ber of trucks exists. On the other hand, based on Figure
13, a reduced number of shovels accounted for an increase
of profitability. To verify when adding further equipment is
no more beneficial from the profits point of view, Figure
14 is laid out, which depicts the “the profit per truck” as a
function of the number of trucks in the system with varying
maintenance policy thresholds and shovel counts. Figure 14
suggests that selecting a reduced fleet size could increase the
overall profitability of operations (see the middle subplot).
The unprofitable configurations, i.e. those showing an unbal-
anced amount of trucks and shovels, locate themselves into
the lower-left quadrants of the plots, where profits are nega-
tive. Moreover, Figure 14 highlights that, when investing in
three shovels, one should prefer maintenance policies with
n ≈ 1.0, whereas a smaller fleet size could perform at its
highest with a n ∈ [0.8, 0.9].

Result Summary and Analysis

The limited set of results shows that in the mining industry
the co-simulation of detailed O&M models for fleet oper-
ations in connection with the managerial CF models may
provide a way to improve the overall profitability. The poten-
tial for economic improvement in this study was brought by
the possibility to combine fleet design and maintenance pol-
icy, which, based on the detailed simulation, could be able
to produce a comparable high revenue per invested unit of
money without simply striving to maximize either the rate of
excavation or mill utilization that are usually viewed as the
most important key performance indicators.

In the model demonstration, a total time frame of one year
with weekly simulations in the O&M model was used. For
real-world applications with constantly updating operational
data, a more frequent optimization might be a more inter-
esting choice, where the managerial considerations could
involve the choice of alternative mine plans with less focus
on the current market price.

Discussion and Conclusions

This paper presented a DT modeling approach aimed to
dynamically optimize the O&M in the mining industry with
respect to the uncertain price of the end-product. A two-
stage simulation was adopted: firstly, a selected set of mining
equipment with their unique failure distributionswas chosen,
and its capabilities tomeet the production demand in the con-
centrator plantwas simulated using discrete event simulation.
In the second phase, the aggregated information provided by
the DES was fed to the managerial CF model with costs
fully accounted to evaluate the overall economic optimum
from the operations perspective.

The DES experiment produced useful information on the
availability and utilization ofmining equipment, andwewere
able to connect the aggregated output data with the overall
profitability of the business via the managerial CF model to
form a “digital twin of manufacturing” in mining. Within the
limits of the selected simulation values, it seems that in most
cases maximizing mill utilization and production throughput
would yield the highest expected revenues regardless of the
realized price array, but some opportunities for downsizing
may exist. The results highlight the role of maintenance as
a necessary evil with only little potential to the economic
upside. However, these results are highly dependent on the
selected values and should be re-evaluated using a more
extensive sensitivity analysis of the DT presented or a case
example of a real mine.

Some implications to managerial decision making of the
mining industry can be suggested. First, simulation-based
DT modeling can perform overall operational optimization
while considering the stochasticity and high dimensional-
ity of operational data, which, as the second point, allows
simultaneous consideration of operational and investment
decisions. From the methodological point of view, the whole
concept of DT is still taking its shape, and often it is used
just to bring extra buzz to promote one’s simulation efforts.
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Fig. 14 The profit per truck is plotted as function of the number of trucks for different maintenance policies

We used the term specifically to refer to a holistic system
optimization model that consists of several, data-based, self-
reliant, and discipline-specific, simulation models. These
models run parallelly and they are connected in the virtual
space, which could have a (near) real-time connection with
the physical process. Whether in the future the approach
would be labeled DT or not, the models evidently have nov-
elty value beyond simpler simulations applied today. Insights
gained from our modeling efforts corroborate the earlier
findings and discussion around the problems in the imple-
mentation of DTs. These issues include, but are not limited
to, i) the dimensionality and the degrees of freedom of data
in large models, ii) a suitable level of data aggregation when
transferring it between discipline models, and iii) the valida-
tion and verification (V&V) of the results.

A central limitation related to the V&V of this paper is
the absence of a true physical mining system; on the other
hand, fully virtual modeling enabled testing and running
experiments rapidly for scientific research. It should be also
acknowledged that the TTF distributions are not able to fully
capture the reality ofmaintenance: additional details could be
added in the O&Mmodel by making the failure probabilities
dynamic or component-based to reflect the agents’ actions
better than the static ones used here. As future avenues of
research, a case-specifically tailored DES-model could be
taken into action, which is connected to the relevant data-
gathering systems for up-to-date information as well as the
existing CFmodels. On the other hand, rather than increasing
the details of modeling, there is an emerging need to develop
meta-model based methods that can interpret the results of
DT-simulation in a fast and managerially digestible manner.
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A Experiment Parameters

The parameters used to characterize the components used in
the simulation experiments are reported in the following. The
TTF of trucks and shovels are the same used in (Mena et al.
2013).
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Table 3 Parameters for
characterization of truck objects.
Legend: the letters α and β

indicate the shape and scale
factor of a two-parameter
Weibull distribution

Quantity TTF TTR PM TTR CM Capacity

Distribution Type Weibull Log Normal Log Normal Gaussian

Paramter Id α β μ σ μ σ μ σ CT
C CT

P

1 45 2.1 1.44 0.99 1.87 1.28 220 5 500 60

2 55 1.4 1.36 1.06 1.76 1.37 220 5 500 60

3 34 2.5 1.57 0.96 2.04 1.24 220 5 500 60

4 44 1.3 1.50 1.22 1.95 1.58 220 5 500 60

5 34 1.9 1.13 0.92 1.46 1.19 220 5 500 60

6 50 1.5 1.46 1.03 1.89 1.33 220 5 500 60

7 52 2.3 1.55 1.10 2.01 1.43 220 5 500 60

8 41 2.1 1.25 0.99 1.62 1.28 220 5 500 60

9 38 1.3 1.22 1.02 1.58 1.08 220 5 500 60

10 32 1.6 1.34 1.25 1.74 1.62 220 5 500 60

The lettersμ and σ represent the mean and the standard deviation of a Gaussian and a log-normal distribution.
CT
C and CT

P are respectively the cost of corrective and preventive maintenance of a truck

Table 4 Parameters for the characterization of shovel objects. Legend: the letters α and β indicate the shape and scale factor of a two-parameter
Weibull distribution

Quantity TTF TTR PM TTR CM Capacity

Distribution Type Weibull Log Normal Log Normal Gaussian

Paramter Id. α β μ σ μ σ μ σ CS
C CS

P

1 196 2.0 1.44 0.99 1.87 1.2 2.33 0.26 2000 140

2 187 2.3 1.48 1.19 1.92 1.25 2.21 0.21 2000 140

3 200 1.9 1.35 1.10 1.79 1.18 2.27 0.19 2200 170

The letters μ and σ represent the mean and the standard deviation of a log-normal distribution. CS
C and CS

P are respectively the cost of corrective
and preventive maintenance of a truck

B Simulation Optimization Details

To optimize the configuration of the systemmeans to identify
the number of trucks and shovels that guarantees to achieve
the production target X at the minimum cost. The response
surfaceE[J (θ)] is obtained through anMCS experiment and
the effect of constrained resources – i.e. the number of main-
tenance workshops and the maximum capacity of stockpiles
– is not easily predictable. We observed that the number
of available workshops makes the increase in throughput
non-monotonic with respect to an increase in the number
of operating trucks and shovels. Therefore, the possibility
to guide the search according to some heuristic must be
dropped, and given the relatively low number of possible
combinations, an enumerative search procedure was imple-
mented. Once the average values of throughput produced
by the system were available, the solutions were ranked in
ascending order concerning the expected cost ofmaintenance
E[J (θ)].

Maintenance thresholds are continuous real variables,
which are constrained to be positive. Since there are no

Table 5 Parameters for the characterization of dumpsites and work-
shops

Quantity Serving Time Coordinates

Distribution Type Log Normal

Parameter Id. μ σ x y

Dumpsites 1 1.13 0.15 6 5

2 1.2 0.17 7 3

Workshops 1 – – 3 0

2 – – 6 0

Legend: letters μ and σ represent the mean and the standard deviation
of a log-normal distribution

other constraints, an effective tool to find a minimum of the
response surfaceE[J (θ)] is the genetic algorithm (GA). Each
individual of the population was represented by a vector P ,
which was introduced in Eq. (3), and the size of the initial
population was set to 50 individuals. The selection of parents
occurred according to the “fitness proportionate selection”
mechanism, whereas single-point crossover operations and
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mutation operations were performed with a preference for
the latter (a ratio of 4 mutations to 1 crossover was used).
Crossover operations consisted in the selection of a random
element of two vectors P , at which the vectors are separated
in a head and a tail, and subsequently the tails are swapped.
Mutation operations occurred with a probability of 0.2 for
each element of P , and when the mutation occurred a quan-
tity sampled from a normal distribution ∼ N (0, 0.1) was
added to the element. The stopping criterion used in the GA
was the limit on the number of generations, which was set
equal to 25. The GAwas indeed tested using a different num-
ber of generations up to 100 and the algorithm showed no
meaningful improvement of the best solution found after 30

generations.Thenumber ofDESs required to obtain a reliable
estimate of the response surface value returned by an individ-
ual was estimated in 50 repetitions. Such requirement makes
the execution of the algorithm computationally demanding,
therefore a 64-bitWindowsServer 2016, IntelXeonPlatinum
8160 CPU 2.10 GHz, with 768 GB of RAMworkstation was
used to run the algorithm; a single optimization required on
average 30 min.

C Cash FlowModel Parameters

Table 6 Parameters used for CF
modeling in the simulation
experiments. If the cell is empty
as the experiment column
number increases, then the last
given value of the row in
question prevails

Parameter Unit Exp. 1(a) Exp. 1(b) Exp. 2

Simulation timeframeyear 1 - -

Technical Parameters

Mill capacity tn/h 1100 - -

Cu-content %/tn 5 - -

Fuel consumption

Truck moving liters/h 100 - -

Truck idle liters/h 10 - -

Shovel operating liters/h 50 - -

Shovel idle liters/h 5 - -

Economic Parameters

Cu-price (at t = 0) $/tn 5000 - -

Cu-volatility %/yr 10 - -

Cu-trend %/yr {−10, 0, 10}- 10

Production unit cost %/yr 1 - -

Payable factor %/tn of Cu 10 - -

Fuel cost $/litre 0.8 - -

Trucks

Leasing $/pc/month10000 - -

Salary cost $/h/pc 100 - -

PM event cost $/pc 400 {360, 400, 440}1 -

CM event cost $/pc 700 {693, 700, 3500}2 -

PM frequency, n {0, 1, ∞} - {0.125, . . ., 1}

Shovels with 0.125 step

Leasing $/pc/month10,000 - -

Salary cost $/h/pc 120 - -

PM event cost $/pc 700 {630, 700, 770}3 -

CM event cost $/pc 2000 {1980, 2000, 10,000}4-

PM frequency, n {0, 1, ∞ } - {0.125, . . ., 1}

with 0.125 step

1,2,3,4: Triangular distribution; average of 10000 draws: 4001, 16262, 7003, 46594
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D Influence of Price Trends

Table 7 Relative ranking of equipment design options with different price assumptions, when using run-to-failure maintenance policy

Trend Increase Decrease No trend

#Shovels 1 2 3 1 2 3 1 2 3
#Trucks
1 −22.58 −22.61 −22.60
2 5.06 −1.05 1.97 −4.30 3.46 −2.73
3 18.44 15.17 0.00 13.48 9.97 2.40 15.88 12.48 4.86
4 20.02 16.34 11.01 14.34 10.58 5.25 17.09 13.37 8.03
5 27.83 22.74 17.77 20.99 15.83 10.88 24.30 19.17 14.22
6 33.86 28.56 17.20 25.84 20.53 9.87 29.72 24.41 13.42
7 32.96 31.13 25.67 24.67 22.61 16.84 28.68 26.73 21.11
8 35.29 35.34 29.58 26.13 25.92 20.07 30.56 30.48 24.67
9 38.10 33.84 28.06 28.26 23.90 18.12 33.01 28.70 22.92
10 32.67 28.92 23.88 22.75 18.97 13.94 27.55 23.78 18.74
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